Publications about 'transcription'
Articles in journal or book chapters
  1. V. H. Nagaraj, J. M. Greene, A. M. Sengupta, and and E.D. Sontag. Translation inhibition and resource balance in the TX-TL cell-free gene expression system. Synthetic Biology, 2017. Note: In press. Preprint in biorxiv 10.1101/142869 with same title, May 2017.Keyword(s): cell-free systems, in vitro synthetic biology.
    Utilizing the synthetic transcription-translation (TX-TL) system, this paper studies the impact of nucleotide triphosphates (NTPs) and magnesium (Mg2+), on gene expression, in the context of the counterintuitive phenomenon of suppression of gene expression at high NTP concentration. Measuring translation rates for different Mg2+ and NTP concentrations, we observe a complex resource dependence. We demonstrate that translation is the rate-limiting process that is directly inhibited by high NTP concentrations. Additional Mg2+ can partially reverse this inhibition. In several experiments, we observe two maxima of the translation rate viewed as a function of both Mg2+ and NTP concentration, which can be explained in terms of an NTP-independent effect on the ribosome complex and an NTP- Mg2+ titration effect. The non-trivial compensatory effects of abundance of different vital resources signals the presence of complex regulatory mechanisms to achieve optimal gene expression.

  2. T.H. Segall-Shapiro, E. D. Sontag, and C. A. Voigt. Constant gene expression at any copy number using feedforward stabilized promoters. Submitted to Nature Biotechnology, 2017. Keyword(s): synthetic biology, systems biology, genetic circuits, gene copy number.
    This paper deals with the design of promoters that maintain constant levels of expression, whether they are carried at single copy in the genome or on high-copy plasmids. The design is based on an incoherent feedforward loop (iFFL) with a perfectly non-cooperative repression. The circuits are implemented in E. coli using Transcription Activator Like Effectors (TALEs). The resulting stabilized promoters generate near identical expression across different genome locations and plasmid backbones (pSC101, p15a, ColE1, pUC), and also provide robustness to strain mutations and growth media. Further, their strength is tunable and can be used to maintain constant ratios between proteins.

  3. T.H. Segall-Shapiro, A.J. Meyer, A.D. Ellington, E.D. Sontag, and C.A. Voigt. A `resource allocator' for transcription based on a highly fragmented T7 RNA polymerase. Molecular Systems Biology, 10:742-, 2014. [WWW] [PDF] Keyword(s): systems biology, synthetic biology, gene expression.
    A transcriptional system is built based on a 'resource allocator' that sets a core RNAP concentration, which is then shared by multiple sigma fragments, which provide specificity. Adjusting the concentration of the core sets the maximum transcriptional capacity available to a synthetic system.

  4. V. Shimoga, J.T. White, Y. Li, E.D. Sontag, and L. Bleris. Synthetic mammalian transgene negative autoregulation. Molecular Systems Biology, 9:670-, 2013. [PDF] Keyword(s): systems biology, synthetic biology, gene expression.
    Using synthetic circuits stably integrated in human kidney cells, we study the effect of negative feedback regulation on cell-wide (extrinsic) and gene-specific (intrinsic) sources of uncertainty. We develop a theoretical approach to extract the two noise components from experiments and show that negative feedback reduces extrinsic noise while marginally increasing intrinsic noise, resulting to significant total noise reduction. We compare the results to simple negative regulation, where a constitutively transcribed transcription factor represses a reporter protein. We observe that the control architecture also reduces the extrinsic noise but results in substantially higher intrinsic fluctuations. We conclude that negative feedback is the most efficient way to mitigate the effects of extrinsic fluctuations by a sole regulatory wiring.

  5. R. Albert, B. DasGupta, R. Hegde, G.S. Sivanathan, A. Gitter, G. Gürsoy, P. Paul, and E.D. Sontag. A new computationally efficient measure of topological redundancy of biological and social networks. Physical Review E, 84:036117, 2011. [PDF]
    In this paper, we introduce a topological redundancy measure for labeled directed networks that is formal, computationally efficient and applicable to a variety of directed networks such as cellular signaling, metabolic and social interaction networks. We demonstrate the computational efficiency of our measure by computing its value and statistical significance on a number of biological and social networks with up to several thousands of nodes and edges. Our results suggest a number of interesting observations: (1) social networks are more redundant that their biological counterparts, (2) transcriptional networks are less redundant than signaling networks, (3) the topological redundancy of the C. elegans metabolic network is largely due to its inclusion of currency metabolites, and (4) the redundancy of signaling networks is highly (negatively) correlated with monotonicity of their dynamics.

  6. L. Bleris, Z. Xie, D. Glass, A. Adadey, E.D. Sontag, and Y. Benenson. Synthetic incoherent feed-forward circuits show adaptation to the amount of their genetic template. Molecular Systems Biology, 7:519-, 2011. [PDF] Keyword(s): adaptation, feedforward loops, systems biology, synthetic biology.
    Natural and synthetic biological networks must function reliably in the face of fluctuating stoichiometry of their molecular components. These fluctuations are caused in part by changes in relative expression efficiency and the DNA template amount of the network-coding genes. Gene product levels could potentially be decoupled from these changes via built-in adaptation mechanisms, thereby boosting network reliability. Here we show that a mechanism based on an incoherent feed-forward motif enables adaptive gene expression in mammalian cells. We modeled, synthesized, and tested transcriptional and post-transcriptional incoherent loops and found that in all cases the gene product adapts to changes in DNA template abundance. We also observed that the post-transcriptional form results in superior adaptation behavior, higher absolute expression levels, and lower intrinsic fluctuations. Our results support a previously-hypothesized endogenous role in gene dosage compensation for such motifs and suggest that their incorporation in synthetic networks will improve their robustness and reliability.

  7. A.C. Jiang, A. C. Ventura, E. D. Sontag, S. D. Merajver, A. J. Ninfa, and D. Del Vecchio. Load-induced modulation of signal transduction networks. Science Signaling, 4, issue 194:ra67, 2011. [PDF] Keyword(s): systems biology, biochemical networks, synthetic biology, futile cycles, singular perturbations, modularity.
    Biological signal transduction networks are commonly viewed as circuits that pass along in the process amplifying signals, enhancing sensitivity, or performing other signal-processing to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a s ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets

  8. G. Russo, M. di Bernardo, and E.D. Sontag. Global entrainment of transcriptional systems to periodic inputs. PLoS Computational Biology, 6:e1000739, 2010. [PDF] Keyword(s): contractive systems, contractions, systems biology, biochemical networks, gene and protein networks.
    This paper addresses the problem of giving conditions for transcriptional systems to be globally entrained to external periodic inputs. By using contraction theory, a powerful tool from dynamical systems theory, it is shown that certain systems driven by external periodic signals have the property that all solutions converge to fixed limit cycles. General results are proved, and the properties are verified in the specific case of some models of transcriptional systems.

  9. T. Riley, X. Yu, E.D. Sontag, and A. Levine. The P53HMM algorithm: using novel profile Hidden Markov Models to detect p53-responsive genes. BMC Bioinformatics, 10:111, 2009. [PDF] [doi:10.1186/1471-2105-10-111] Keyword(s): Hidden Markov Models, p53, transcription factors.
    A novel computational method (called p53HMM) is presented that utilizes Profile Hidden Markov Models (PHMM's) to estimate the relative binding affinities of putative p53 response elements (RE's), both p53 single-sites and cluster-sites. These models incorporate a novel ``Correlated Baum Welch'' training algorithm that provides increased predictive power by exploiting the redundancy of information found in the repeated, palindromic p53-binding motif. The predictive accuracy of these new models are compared against other predictive models, including position specic score matrices (PSSM's, or weight matrices). Finally, we provide experimental evidence that verifies a predicted p53-target site that regu- lates the CHMP4C gene. The P53HMM algorithm is available on-line from

  10. D. Angeli and E.D. Sontag. Oscillations in I/O monotone systems. IEEE Transactions on Circuits and Systems, Special Issue on Systems Biology, 55:166-176, 2008. Note: Preprint version in arXiv q-bio.QM/0701018, 14 Jan 2007. [PDF] Keyword(s): monotone systems, hopf bifurcations, circadian rhythms, tridiagonal systems, nonlinear dynamics, systems biology, biochemical networks, oscillations, periodic behavior.
    In this note, we show how certain properties of Goldbeter's 1995 model for circadian oscillations can be proved mathematically, using techniques from the recently developed theory of monotone systems with inputs and outputs. The theory establishes global asymptotic stability, and in particular no oscillations, if the rate of transcription is somewhat smaller than that assumed by Goldbeter, based on the application of a tight small gain condition. This stability persists even under arbitrary delays in the feedback loop. On the other hand, when the condition is violated a Poincare'-Bendixson result allows to conclude existence of oscillations, for sufficiently high delays.

  11. D. Del Vecchio, A.J. Ninfa, and E.D. Sontag. Modular Cell Biology: Retroactivity and Insulation. Molecular Systems Biology, 4:161, 2008. [PDF] Keyword(s): retroactivity, systems biology, biochemical networks, synthetic biology, futile cycles, singular perturbations, modularity.
    Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input/output dynamic characteristics of transcriptional components, focusing on a property, which we call "retroactivity," that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter binding sites, or when the affinity of such binding sites is high. In order to attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation/dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast time scales of the phosphorylation and dephosphorylation reactions. Such a mechanism, when viewed as a signal transduction system, has thus an inherent capacity to provide insulation and hence to increase the modularity of the system in which it is placed.

  12. T. Riley, E.D. Sontag, P. Chen, and A. Levine. The transcriptional regulation of human p53-regulated genes. Nature Reviews Molecular Cell Biology, 9:402-412, 2008. [PDF] Keyword(s): Hidden Markov Models, p53, transcription.
    The p53 protein regulates the transcription of many different genes in response to a wide variety of stress signals. Following DNA damage, p53 regulates key processes, including DNA repair, cell-cycle arrest, senescence and apoptosis, in order to suppress cancer. This Analysis article provides an overview of the current knowledge of p53-regulated genes in these pathways and others, and the mechanisms of their regulation. In addition, we present the most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation.

  13. E.D. Sontag. Network reconstruction based on steady-state data. Essays in Biochemistry, 45:161-176, 2008. [PDF] Keyword(s): systems biology, biochemical networks, gene and protein networks, reverse engineering, systems identification.
    The ``reverse engineering problem'' in systems biology is that of unraveling of the web of interactions among the components of protein and gene regulatory networks, so as to map out the direct or local interactions among components. These direct interactions capture the topology of the functional network. An intrinsic difficulty in capturing these direct interactions, at least in intact cells, is that any perturbation to a particular gene or signaling component may rapidly propagate throughout the network, thus causing global changes which cannot be easily distinguished from direct effects. Thus, a major goal in reverse engineering is to use these observed global responses - such as steady-state changes in concentrations of active proteins, mRNA levels, or transcription rates - in order to infer the local interactions between individual nodes. One approach to solving this global-to-local problem is the ``Modular Response Analysis'' (MRA) method proposed in work of the author with Kholodenko et. al. (PNAS, 2002) and further elaborated in other papers. The basic method deals only with steady-state data. However, recently, quasi-steady state MRA has been used by Santos et. al. (Nature Cell Biology, 2007) for quantifying positive and negative feedback effects in the Raf/Mek/Erk MAPK network in rat adrenal pheochromocytoma (PC-12) cells. This paper presents an overview of the MRA technique, as well as a generalization of the algorithm to that quasi-steady state case.

  14. R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E.D. Sontag, A. Zelikovsky, and K. Westbrooks. A novel method for signal transduction network inference from indirect experimental evidence. Journal of Computational Biology, 14:927-949, 2007. [PDF] Keyword(s): systems biology, biochemical networks, algorithms, signal transduction networks, graph algorithms.
    This paper introduces a new method of combined synthesis and inference of biological signal transduction networks. The main idea lies in representing observed causal relationships as network paths, and using techniques from combinatorial optimization to find the sparsest graph consistent with all experimental observations. The paper formalizes the approach, studies its computational complexity, proves new results for exact and approximate solutions of the computationally hard transitive reduction substep of the approach, validates the biological applicability by applying it to a previously published signal transduction network by Li et al., and shows that the algorithm for the transitive reduction substep performs well on graphs with a structure similar to those observed in transcriptional regulatory and signal transduction networks.

Conference articles
  1. D. Del Vecchio, A.J. Ninfa, and E.D. Sontag. A Systems Theory with Retroactivity: Application to Transcriptional Modules. In Proceedings of the 2008 American Control Conference, Seattle, June 2008, pages Paper WeC04.1, 2008. [PDF] Keyword(s): retroactivity, systems biology, biochemical networks, synthetic biology, futile cycles, singular perturbations, modularity.

  2. D. Angeli and E.D. Sontag. An analysis of a circadian model using the small-gain approach to monotone systems. In Proc. IEEE Conf. Decision and Control, Paradise Island, Bahamas, Dec. 2004, IEEE Publications, pages 575-578, 2004. [PDF] Keyword(s): circadian rhythms, tridiagonal systems, nonlinear dynamics, systems biology, biochemical networks, oscillations, periodic behavior, monotone systems.
    We show how certain properties of Goldbeter's original 1995 model for circadian oscillations can be proved mathematically. We establish global asymptotic stability, and in particular no oscillations, if the rate of transcription is somewhat smaller than that assumed by Goldbeter, but, on the other hand, this stability persists even under arbitrary delays in the feedback loop. We are mainly interested in illustrating certain mathematical techniques, including the use of theorems concerning tridiagonal cooperative systems and the recently developed theory of monotone systems with inputs and outputs.

Internal reports
  1. J. Barton and E.D. Sontag. Remarks on the energy costs of insulators in enzymatic cascades. Technical report,, December 2014. [PDF] Keyword(s): retroactivity, systems biology, biochemical networks, futile cycles, singular perturbations, modularity.
    The connection between optimal biological function and energy use, measured for example by the rate of metabolite consumption, is a current topic of interest in the systems biology literature which has been explored in several different contexts. In [J. P. Barton and E. D. Sontag, Biophys. J. 104, 6 (2013)], we related the metabolic cost of enzymatic futile cycles with their capacity to act as insulators which facilitate modular interconnections in biochemical networks. There we analyzed a simple model system in which a signal molecule regulates the transcription of one or more target proteins by interacting with their promoters. In this note, we consider the case of a protein with an active and an inactive form, and whose activation is controlled by the signal molecule. As in the original case, higher rates of energy consumption are required for better insulator performance.



This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

Last modified: Thu Nov 23 10:40:57 2017
Author: sontag.

This document was translated from BibTEX by bibtex2html