BACK TO INDEX

Publications about 'toggle switches'
Articles in journal or book chapters
  1. M. A. Al-Radhawi, D. Del Vecchio, and E. D. Sontag. Multi-modality in gene regulatory networks with slow gene binding. 2017. Note: Submitted. Preprint in arXiv:1705.02330, May 2017 rev Nov 2017. [PDF] Keyword(s): multistability, gene networks, Markov Chains, Master Equation, cancer heterogeneity, phenotypic variation, nonlinear systems, stochastic models, epigenetics.
    Abstract:
    In biological processes such as embryonic development, hematopoietic cell differentiation, and the arising of tumor heterogeneity and consequent resistance to therapy, mechanisms of gene activation and deactivation may play a role in the emergence of phenotypically heterogeneous yet genetically identical (clonal) cellular populations. Mathematically, the variability in phenotypes in the absence of genetic variation can be modeled through the existence of multiple metastable attractors in nonlinear systems subject with stochastic switching, each one of them associated to an alternative epigenetic state. An important theoretical and practical question is that of estimating the number and location of these states, as well as their relative probabilities of occurrence. This paper focuses on a rigorous analytic characterization of multiple modes under slow promoter kinetics, which is a feature of epigenetic regulation. It characterizes the stationary distributions of Chemical Master Equations for gene regulatory networks as a mixture of Poisson distributions. As illustrations, the theory is used to tease out the role of cooperative binding in stochastic models in comparison to deterministic models, and applications are given to various model systems, such as toggle switches in isolation or in communicating populations and a trans-differentiation network.


  2. E.V. Nikolaev and E.D. Sontag. Quorum-sensing synchronization of synthetic toggle switches: A design based on monotone dynamical systems theory. PLoS Computational Biology, 12:e1004881, 2016. [PDF] Keyword(s): quorum sensing, toggle switches, monotone systems.
    Abstract:
    Synthetic constructs in biotechnology, bio-computing, and proposed gene therapy interventions are often based on plasmids or transfected circuits which implement some form of on-off (toggle or flip-flop) switch. For example, the expression of a protein used for therapeutic purposes might be triggered by the recognition of a specific combination of inducers (e.g., antigens), and memory of this event should be maintained across a cell population until a specific stimulus commands a coordinated shut-off. The robustness of such a design is hampered by molecular (intrinsic) or environmental (extrinsic) noise, which may lead to spontaneous changes of state in a subset of the population and is reflected in the bimodality of protein expression, as measured for example using flow cytometry. In this context, a majority-vote correction circuit, which brings deviant cells back into the required state, is highly desirable. To address this concrete challenge, we have developed a new theoretical design for quorum-sensing (QS) synthetic toggles. QS provides a way for cells to broadcast their states to the population as a whole so as to facilitate consensus. Our design is endowed with strong theoretical guarantees, based on monotone dynamical systems theory, of global stability and no oscillations, and which leads to robust consensus states.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Thu Nov 23 10:40:57 2017
Author: sontag.


This document was translated from BibTEX by bibtex2html