Publications about 'reachability'
Articles in journal or book chapters
  1. A. C. Antoulas, E. D. Sontag, and Y. Yamamoto. Controllability and Observability, pages 264-281. John Wiley & Sons, Inc., 2001. [WWW] [PDF] [doi:10.1002/047134608X.W1006] Keyword(s): reachability, controllability, observability, Lie algebra accessibility.

  2. E.D. Sontag. Reachability, observability, and realization of a class of discrete-time nonlinear systems. In Encycl. of Systems and Control, pages 3288-3293. Pergamon Press, 1987. Keyword(s): observability.

  3. E.D. Sontag. Comments on: ``Some results on pole-placement and reachability'' [Systems Control Lett. 6 (1986), no. 5, 325--328; MR0821927 (87c:93032)] by P. K. Sharma. Systems Control Lett., 8(1):79-83, 1986. [PDF] [doi:]
    We present various comments on a question about systems over rings posed in a recent note by Sharma, proving that a ring R is pole-assignable if and only if, for every reachable system (F,G), G contains a rank-one summand of the state space. We also provide a generalization to deal with dynamic feedback.

  4. E.D. Sontag. On finitary linear systems. Kybernetika (Prague), 15(5):349-358, 1979. [PDF] Keyword(s): systems over rings.
    An abstract operator approach is introduced, permitting a unified study of discrete- and continuous-time linear control systems. As an application, an algorithm is given for deciding if a linear system can be built from any fixed set of linear components. Finally, a criterion is given for reachability of the abstract systems introduced, giving thus a unified proof of known reachability results for discrete-time, continuous-time, and delay-differential systems.

  5. E.D. Sontag and Y. Rouchaleau. On discrete-time polynomial systems. Nonlinear Anal., 1(1):55-64, 1976. [PDF] Keyword(s): identifiability, observability, polynomial systems, realization theory, discrete-time.
    Considered here are a type of discrete-time systems which have algebraic constraints on their state set and for which the state transitions are given by (arbitrary) polynomial functions of the inputs and state variables. The paper studies reachability in bounded time, the problem of deciding whether two systems have the same external behavior by applying finitely many inputs, the fact that finitely many inputs (which can be chosen quite arbitrarily) are sufficient to separate those states of a system which are distinguishable, and introduces the subject of realization theory for this class of systems.



This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

Last modified: Thu Nov 23 10:40:57 2017
Author: sontag.

This document was translated from BibTEX by bibtex2html