BACK TO INDEX

Publications about 'modularity'
Articles in journal or book chapters
  1. J. Barton and E.D. Sontag. The energy costs of insulators in biochemical networks. Biophysical Journal, 104:1390-1380, 2013. [PDF]
    Abstract:
    Complex networks of biochemical reactions, such as intracellular protein signaling pathways and genetic networks, are often conceptualized in terms of ``modules,'' semi-independent collections of components that perform a well-defined function and which may be incorporated in multiple pathways. However, due to sequestration of molecular messengers during interactions and other effects, collectively referred to as retroactivity, real biochemical systems do not exhibit perfect modularity. Biochemical signaling pathways can be insulated from impedance and competition effects, which inhibit modularity, through enzymatic ``futile cycles'' which consume energy, typically in the form of ATP. We hypothesize that better insulation necessarily requires higher energy consumption. We test this hypothesis through a combined theoretical and computational analysis of a simplified physical model of covalent cycles, using two innovative measures of insulation, as well as a new way to characterize optimal insulation through the balancing of these two measures in a Pareto sense. Our results indicate that indeed better insulation requires more energy. While insulation may facilitate evolution by enabling a modular ``plug and play'' interconnection architecture, allowing for the creation of new behaviors by adding targets to existing pathways, our work suggests that this potential benefit must be balanced against the metabolic costs of insulation necessarily incurred in not affecting the behavior of existing processes.


  2. E.D. Sontag. Modularity, retroactivity, and structural identification. In H. Koeppl, G. Setti, M. di Bernardo, and D. Densmore, editors, Design and Analysis of Biomolecular Circuits, pages 183-202. Springer-Verlag, 2011. [PDF] Keyword(s): modularity, retroactivity, identification.
    Abstract:
    Many reverse-engineering techniques in systems biology rely upon data on steady-state (or dynamic) perturbations --obtained from siRNA, gene knock-down or overexpression, kinase and phosphatase inhibitors, or other interventions-- in order to understand the interactions between different ``modules'' in a network. This paper first reviews one such popular such technique, introduced by the author and collaborators, and focuses on why conclusions drawn from its use may be misleading due to ``retroactivity'' (impedance or load) effects. A theoretical result characterizing stoichiometric-induced steady-state retroactivity effects is given for a class of biochemical networks.


  3. A.C. Jiang, A. C. Ventura, E. D. Sontag, S. D. Merajver, A. J. Ninfa, and D. Del Vecchio. Load-induced modulation of signal transduction networks. Science Signaling, 4, issue 194:ra67, 2011. [PDF] Keyword(s): systems biology, biochemical networks, synthetic biology, futile cycles, singular perturbations, modularity.
    Abstract:
    Biological signal transduction networks are commonly viewed as circuits that pass along in the process amplifying signals, enhancing sensitivity, or performing other signal-processing to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a s ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets


  4. D. Del Vecchio and E.D. Sontag. Synthetic Biology: A Systems Engineering Perspective. In B.P. Ingalls and P. Iglesias, editors, Control Theory in Systems Biology, pages 101-123. MIT Press, 2009.
    Abstract:
    This is an expository paper about certain aspects of Synthetic Biology, including a discussion of the issue of modularity (load effects from downstream components).


  5. D. Del Vecchio and E.D. Sontag. Engineering Principles in Bio-Molecular Systems: From Retroactivity to Modularity. European Journal of Control, 15:389-397, 2009. Note: Preliminary version appeared as paper MoB2.2 in Proceedings of the European Control Conference 2009, August 23-26, 2009, Budapest. [PDF] Keyword(s): systems biology, biochemical networks, synthetic biology, futile cycles, singular perturbations, modularity.


  6. D. Del Vecchio, A.J. Ninfa, and E.D. Sontag. Modular Cell Biology: Retroactivity and Insulation. Molecular Systems Biology, 4:161, 2008. [PDF] Keyword(s): retroactivity, systems biology, biochemical networks, synthetic biology, futile cycles, singular perturbations, modularity.
    Abstract:
    Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input/output dynamic characteristics of transcriptional components, focusing on a property, which we call "retroactivity," that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter binding sites, or when the affinity of such binding sites is high. In order to attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation/dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast time scales of the phosphorylation and dephosphorylation reactions. Such a mechanism, when viewed as a signal transduction system, has thus an inherent capacity to provide insulation and hence to increase the modularity of the system in which it is placed.


Conference articles
  1. E.D. Sontag. Remarks on structural identification, modularity, and retroactivity. In Proc. IEEE Conf. Decision and Control, Atlanta, Dec. 2010, pages ThA23.1, 2010. [PDF] Keyword(s): modularity, retroactivity, identification.
    Abstract:
    Summarized conference version of ``Modularity, retroactivity, and structural identification''.


  2. D. Del Vecchio, A.J. Ninfa, and E.D. Sontag. A Systems Theory with Retroactivity: Application to Transcriptional Modules. In Proceedings of the 2008 American Control Conference, Seattle, June 2008, pages Paper WeC04.1, 2008. [PDF] Keyword(s): retroactivity, systems biology, biochemical networks, synthetic biology, futile cycles, singular perturbations, modularity.


Internal reports
  1. J. Barton and E.D. Sontag. Remarks on the energy costs of insulators in enzymatic cascades. Technical report, http://arxiv.org/abs/1412.8065, December 2014. [PDF] Keyword(s): retroactivity, systems biology, biochemical networks, futile cycles, singular perturbations, modularity.
    Abstract:
    The connection between optimal biological function and energy use, measured for example by the rate of metabolite consumption, is a current topic of interest in the systems biology literature which has been explored in several different contexts. In [J. P. Barton and E. D. Sontag, Biophys. J. 104, 6 (2013)], we related the metabolic cost of enzymatic futile cycles with their capacity to act as insulators which facilitate modular interconnections in biochemical networks. There we analyzed a simple model system in which a signal molecule regulates the transcription of one or more target proteins by interacting with their promoters. In this note, we consider the case of a protein with an active and an inactive form, and whose activation is controlled by the signal molecule. As in the original case, higher rates of energy consumption are required for better insulator performance.


  2. J. Barton and E.D. Sontag. The energy costs of biological insulators. Technical report, http://arxiv.org/abs/1210.3809, October 2012. Keyword(s): retroactivity, systems biology, biochemical networks, futile cycles, singular perturbations, modularity.
    Abstract:
    Biochemical signaling pathways can be insulated from impedance and competition effects through enzymatic "futile cycles" which consume energy, typically in the form of ATP. We hypothesize that better insulation necessarily requires higher energy consumption, and provide evidence, through the computational analysis of a simplified physical model, to support this hypothesis.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Thu Nov 23 10:40:56 2017
Author: sontag.


This document was translated from BibTEX by bibtex2html