BACK TO INDEX

Publications about 'Master Equation'
Articles in journal or book chapters
  1. M. A. Al-Radhawi, D. Del Vecchio, and E. D. Sontag. Multi-modality in gene regulatory networks with slow gene binding. 2017. Note: Submitted. Preprint in arXiv:1705.02330, May 2017 rev Nov 2017. [PDF] Keyword(s): multistability, gene networks, Markov Chains, Master Equation, cancer heterogeneity, phenotypic variation, nonlinear systems, stochastic models, epigenetics.
    Abstract:
    In biological processes such as embryonic development, hematopoietic cell differentiation, and the arising of tumor heterogeneity and consequent resistance to therapy, mechanisms of gene activation and deactivation may play a role in the emergence of phenotypically heterogeneous yet genetically identical (clonal) cellular populations. Mathematically, the variability in phenotypes in the absence of genetic variation can be modeled through the existence of multiple metastable attractors in nonlinear systems subject with stochastic switching, each one of them associated to an alternative epigenetic state. An important theoretical and practical question is that of estimating the number and location of these states, as well as their relative probabilities of occurrence. This paper focuses on a rigorous analytic characterization of multiple modes under slow promoter kinetics, which is a feature of epigenetic regulation. It characterizes the stationary distributions of Chemical Master Equations for gene regulatory networks as a mixture of Poisson distributions. As illustrations, the theory is used to tease out the role of cooperative binding in stochastic models in comparison to deterministic models, and applications are given to various model systems, such as toggle switches in isolation or in communicating populations and a trans-differentiation network.


  2. J. K. Kim and E.D. Sontag. Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation. PLoS Computational Biology, 13:13(6): e1005571, 2017. [PDF] Keyword(s): systems biology, biochemical networks, stochastic systems, Chemical Master Equation, chemical reaction networks, moments, molecular networks, complex-balanced networks.
    Abstract:
    Biochemical reaction networks in cells frequently consist of reactions with disparate timescales. Stochastic simulations of such multiscale BRNs are prohibitively slow due to the high computational cost incurred in the simulations of fast reactions. One way to resolve this problem is to replace fast species by their stationary conditional expectation values conditioned on slow species. While various approximations schemes for this quasi-steady state approximation have been developed, they often lead to considerable errors. This paper considers two classes of multiscale BRNs which can be reduced by through an exact QSS rather than approximations. Specifically, we assume that fast species constitute either a feedforward network or a complex balanced network. Exact reductions for various examples are derived, and the computational advantages of this approach are illustrated through simulations.


  3. E.D. Sontag and A. Singh. Exact moment dynamics for feedforward nonlinear chemical reaction networks. IEEE Life Sciences Letters, 1:26-29, 2015. [PDF] Keyword(s): systems biology, biochemical networks, stochastic systems, Chemical Master Equation, chemical reaction networks.
    Abstract:
    Chemical systems are inherently stochastic, as reactions depend on random (thermal) motion. This motivates the study of stochastic models, and specifically the Chemical Master Equation (CME), a discrete-space continuous-time Markov process that describes stochastic chemical kinetics. Exact studies using the CME are difficult, and several moment closure tools related to "mass fluctuation kinetics" and "fluctuation-dissipation" formulas can be used to obtain approximations of moments. This paper, in contrast, introduces a class of nonlinear chemical reaction networks for which exact computation is possible, by means of finite-dimensional linear differential equations. This class allows second and higher order reactions, but only under special assumptions on structure and/or conservation laws.


  4. E.D. Sontag and D. Zeilberger. A symbolic computation approach to a problem involving multivariate Poisson distributions. Advances in Applied Mathematics, 44:359-377, 2010. Note: There are a few typos in the published version. Please see this file for corrections: https://drive.google.com/file/d/0BzWFHczJF2INUlEtVkFJOUJiUFU/view. [PDF] Keyword(s): probability theory, stochastic systems, systems biology, biochemical networks, Chemical Master Equation.
    Abstract:
    Multivariate Poisson random variables subject to linear integer constraints arise in several application areas, such as queuing and biomolecular networks. This note shows how to compute conditional statistics in this context, by employing WZ Theory and associated algorithms. A symbolic computation package has been developed and is made freely available. A discussion of motivating biomolecular problems is also provided.


Conference articles
  1. N.S. Kumar, M. A. Al-Radhawi, D. Del Vecchio, and E. D. Sontag. Stochasticity is necessary for multiple attractors in a class of differentiation networks. In 2017 American Control Conference (ACC), pages submitted, 2017. Keyword(s): systems biology, genetic regulatory, multistability, gene networks.
    Abstract:
    Deterministic models remain the most common option for modeling gene regulatory networks even when the underlying assumptions of high copy numbers and fast promoter kinetics are unsatisfied. Here, we analyze a widely studied differentiation network motif known as the PU.1-GATA-1 circuit and we show that an ODE model of the biomolecular reactions consistent with known biology is incapable of exhibiting multistability, a defining behaviour for such a network. Thus, we consider the chemical master equation model of the same biomolecular reactions and using results recently developed by the authors, we analytically construct the stationary distribution. We show that this distribution is indeed capable of admitting a multitude of modes. We illustrate the results with a numerical example.


Internal reports
  1. E.D. Sontag. Examples of computation of exact moment dynamics for chemical reaction networks. Technical report, arXiv:1612.02393, 2016. [PDF] Keyword(s): systems biology, biochemical networks, stochastic systems, Chemical Master Equation, chemical reaction networks, moments, molecular networks, complex-balanced networks.
    Abstract:
    We review in a unified way results for two types of stochastic chemical reaction systems for which moments can be effectively computed: feedforward networks and complex-balanced networks.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Thu Nov 23 10:40:56 2017
Author: sontag.


This document was translated from BibTEX by bibtex2html