BACK TO INDEX

Publications of Eduardo D. Sontag jointly with T. Tuller
Articles in journal or book chapters
  1. M. Margaliot, E.D. Sontag, and T. Tuller. Checkable conditions for contraction after small transients in time and amplitude. In N. Petit, editor, Feedback Stabilization of Controlled Dynamical Systems - In Honor of Laurent Praly, volume 473 of Lecture Notes in Control and Inform. Sci., pages 279-305. Springer-Verlag, Berlin, 2017. [PDF] Keyword(s): contractions, contractive systems, stability.
    Abstract:
    This is an expository paper, which compares in detail various alternative weak contraction ideas for nonlinear system stability.


  2. Y. Zarai, M. Margaliot, E.D. Sontag, and T. Tuller. Controllability analysis and control synthesis for the ribosome flow model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017. Note: To appear.[PDF] Keyword(s): systems biology, ribosomes, controllability.
    Abstract:
    The ribosomal density along the coding region of the mRNA molecule affects various fundamental intracellular phenomena including: protein production rates, organismal fitness, ribosomal drop off, and co-translational protein folding. Thus, regulating translation in order to obtain a desired ribosomal profile along the mRNA molecule is an important biological problem. This paper studies this problem formulated in the context of the ribosome flow model (RFM) in which one views the transition rates between site as controls.


  3. M. Margaliot, E.D. Sontag, and T. Tuller. Contraction after small transients. Automatica, 67:178-184, 2016. [PDF] Keyword(s): entrainment, nonlinear systems, stability, contractions, contractive systems.
    Abstract:
    Contraction theory is a powerful tool for proving asymptotic properties of nonlinear dynamical systems including convergence to an attractor and entrainment to a periodic excitation. We introduce three new forms of generalized contraction (GC) that are motivated by allowing contraction to take place after small transients in time and/or amplitude. These forms of GC are useful for several reasons. First, allowing small transients does not destroy the asymptotic properties provided by standard contraction. Second, in some cases as we change the parameters in a contractive system it becomes a GC just before it looses contractivity. In this respect, GC is the analogue of marginal stability in Lyapunov stability theory. We provide checkable sufficient conditions for GC, and demonstrate their usefulness using several models from systems biology that are not contractive, with respect to any norm, yet are GC.


  4. A. Raveh, M. Margaliot, E.D. Sontag, and T. Tuller. A model for competition for ribosomes in the cell. Proc. Royal Society Interface, 13:2015.1062, 2016. [PDF] Keyword(s): resource competition, ribosomes, entrainment, nonlinear systems, stability, contractions, contractive systems.
    Abstract:
    We develop and analyze a general model for large-scale simultaneous mRNA translation and competition for ribosomes. Such models are especially important when dealing with highly expressed genes, as these consume more resources. For our model, we prove that the compound system always converges to a steady-state and that it always entrains or phase locks to periodically time-varying transition rates in any of the mRNA molecules. We use this model to explore the interactions between the various mRNA molecules and ribosomes at steady-state. We show that increasing the length of an mRNA molecule decreases the production rate of all the mRNAs. Increasing any of the codon translation rates in a specific mRNA molecule yields a local effect: an increase in the translation rate of this mRNA, and also a global effect: the translation rates in the other mRNA molecules all increase or all decrease. These results suggest that the effect of codon decoding rates of endogenous and heterologous mRNAs on protein production might be more complicated than previously thought.


  5. M. Margaliot, E.D. Sontag, and T. Tuller. Entrainment to periodic initiation and transition rates in a computational model for gene translation. PLoS ONE, 9(5):e96039, 2014. [WWW] [PDF] [doi:10.1371/journal.pone.0096039] Keyword(s): ribosomes, entrainment, nonlinear systems, stability, contractions, contractive systems.
    Abstract:
    A recent biological study has demonstrated that the gene expression pattern entrains to a periodically varying abundance of tRNA molecules. This motivates developing mathematical tools for analyzing entrainment of translation elongation to intra-cellular signals such as tRNAs levels and other factors affecting translation. We consider a recent deterministic mathematical model for translation called the Ribosome Flow Model (RFM). We analyze this model under the assumption that the elongation rate of the tRNA genes and/or the initiation rate are periodic functions with a common period T. We show that the protein synthesis pattern indeed converges to a unique periodic trajectory with period T. The analysis is based on introducing a novel property of dynamical systems, called contraction after a short transient (CAST), that may be of independent interest. We provide a sufficient condition for CAST and use it to prove that the RFM is CAST, and that this implies entrainment. Our results support the conjecture that periodic oscillations in tRNA levels and other factors related to the translation process can induce periodic oscillations in protein levels, and suggest a new approach for engineering genes to obtain a desired, periodic, synthesis rate.


Conference articles
  1. Y. Zarai, M. Margaliot, E.D. Sontag, and T. Tuller. Controlling the ribosomal density profile in mRNA translation. In Proc. IEEE Conf. Decision and Control, Dec. 2016, pages 4184-4189, 2016. Keyword(s): ribosomes, translation.


  2. E.D. Sontag, M. Margaliot, and T. Tuller. On three generalizations of contraction. In Proc. IEEE Conf. Decision and Control, Los Angeles, Dec. 2014, pages 1539-1544, 2014. Keyword(s): contractions, contractive systems, stability.
    Abstract:
    We introduce three forms of generalized contraction~(GC). Roughly speaking, these are motivated by allowing contraction to take place after small transients in time and/or amplitude. Indeed, contraction is usually used to prove asymptotic properties, like convergence to an attractor or entrainment to a periodic excitation, and allowing initial transients does not affect this asymptotic behavior. We provide sufficient conditions for GC, and demonstrate their usefulness using examples of systems that are not contractive, with respect to any norm, yet are~GC.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Thu Nov 23 10:40:56 2017
Author: sontag.


This document was translated from BibTEX by bibtex2html