Publications of Eduardo D. Sontag jointly with J. Greene
Articles in journal or book chapters
  1. J. Greene, J.L. Gevertz, and E. D. Sontag. A mathematical approach to distinguish spontaneous from induced evolution of drug resistance during cancer treatment. 2017. Note: Submitted.Keyword(s): cancer heterogeneity, phenotypic variation, nonlinear systems, epigenetics.
    Resistance to chemotherapy is a major impediment to the successful treatment of cancer. Classically, resistance has been thought to arise primarily through random genetic mutations, after which mutated cells expand via Darwinian selection. However, recent experimental evidence suggests that the progression to resistance need not occur randomly, but instead may be induced by the therapeutic agent itself.This process of resistance induction can be a result of genetic changes, or can occur through epigenetic alterations that cause otherwise drug-sensitive cancer cells to undergo ``phenotype switching''. This relatively novel notion of resistance further complicates the already challenging task of designing treatment protocols that minimize the risk of evolving resistance. In an effort to better understand treatment resistance, we have developed a mathematical modeling framework that incorporates both random and drug-induced resistance. Our model demonstrates that the ability (or lack thereof) of a drug to induce resistance can result in qualitatively different responses to the same drug dose and delivery schedule. The importance of induced resistance in treatment response led us to ask if, in our model, one can determine the resistance induction rate of a drug for a given treatment protocol. Not only could we prove that the induction parameter in our model is theoretically identifiable, we have also proposed a possible in vitro experiment which could practically be used to determine a treatment's propensity to induce resistance.

  2. A. Silva, M. Silva, P. Sudalagunta, A. Distler, T. Jacobson, A. Collins, T. Nguyen, J. Song, D.T. Chen, Lu Chen, . Cubitt, R. Baz, L. Perez, D. Rebatchouk, W. Dalton, J. Greene, R. Gatenby, R. Gillies, E.D. Sontag, M. Meads, and K. Shain. An ex vivo platform for the prediction of clinical response in multiple myeloma. Cancer Research, pp 10.1158/0008-5472.CAN-17-0502, 2017. Keyword(s): cancer, multiple myeloma, personalized therapy.
    This paper describes a novel approach for characterization of chemosensitivity and prediction of clinical response in multiple myeloma. It relies upon a patient-specific computational model of clinical response, parameterized by a high-throughput ex vivo assay that quantifies sensitivity of primary MM cells to 31 agents or combinations, in a reconstruction of the tumor microenvironment. The mathematical model, which inherently accounts for intra-tumoral heterogeneity of drug sensitivity, combined with drug- and regimen-specific pharmacokinetics, produces patient-specific predictions of clinical response 5 days post-biopsy.



This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

Last modified: Thu Nov 23 10:40:56 2017
Author: sontag.

This document was translated from BibTEX by bibtex2html