BACK TO INDEX

Publications of Eduardo D. Sontag jointly with G.A. Enciso
Articles in journal or book chapters
  1. D. Angeli, G.A. Enciso, and E.D. Sontag. A small-gain result for orthant-monotone systems under mixed feedback. Systems and Control Letters, 68:9-19, 2014. [PDF] Keyword(s): small-gain theorem, monotone systems.
    Abstract:
    This paper introduces a small-gain result for interconnected orthant-monotone systems for which no matching condition is required between the partial orders in input and output spaces. Previous results assumed that the partial orders adopted would be induced by positivity cones in input and output spaces and that such positivity cones should fulfill a compatibility rule: namely either be coincident or be opposite. Those two configurations correspond to positive feedback or negative feedback cases. We relax those results by allowing arbitrary orthant orders.


  2. G.A. Enciso and E.D. Sontag. Monotone bifurcation graphs. Journal of Biological Dynamics, 2:121-139, 2008. [PDF]
    Abstract:
    This paper generalizes the approach to bistability based on the existence of characteristics for open-loop monotone systems to the case when characteristics do not exist. A set-valued version is provided, instead.


  3. B. DasGupta, G.A. Enciso, E.D. Sontag, and Y. Zhang. Algorithmic and complexity aspects of decompositions of biological networks into monotone subsystems. BioSystems, 90:161-178, 2007. [PDF] [doi:http://dx.doi.org/10.1016/j.biosystems.2006.08.001] Keyword(s): monotone systems, systems biology, biochemical networks.
    Abstract:
    A useful approach to the mathematical analysis of large-scale biological networks is based upon their decompositions into monotone dynamical systems. This paper deals with two computational problems associated to finding decompositions which are optimal in an appropriate sense. In graph-theoretic language, the problems can be recast in terms of maximal sign-consistent subgraphs. The theoretical results include polynomial-time approximation algorithms as well as constant-ratio inapproximability results. One of the algorithms, which has a worst-case guarantee of 87.9% from optimality, is based on the semidefinite programming relaxation approach of Goemans-Williamson. The algorithm was implemented and tested on a Drosophila segmentation network and an Epidermal Growth Factor Receptor pathway model.


  4. B. Dasgupta, G.A. Enciso, E.D. Sontag, and Y. Zhang. Algorithmic and complexity results for decompositions of biological networks into monotone subsystems. In C. Ālvarez and M. Serna, editors, Lecture Notes in Computer Science: Experimental Algorithms: 5th International Workshop, WEA 2006, pages 253-264. Springer-Verlag, 2006. Note: (Cala Galdana, Menorca, Spain, May 24-27, 2006). Keyword(s): systems biology, biochemical networks, monotone systems, theory of computing and complexity.


  5. G.A. Enciso, H.L. Smith, and E.D. Sontag. Non-monotone systems decomposable into monotone systems with negative feedback. J. of Differential Equations, 224:205-227, 2006. [PDF] Keyword(s): nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    Motivated by the theory of monotone i/o systems, this paper shows that certain finite and infinite dimensional semi-dynamical systems with negative feedback can be decomposed into a monotone open loop system with inputs and a decreasing output function. The original system is reconstituted by plugging the output into the input. By embedding the system into a larger symmetric monotone system, this paper obtains finer information on the asymptotic behavior of solutions, including existence of positively invariant sets and global convergence. An important new result is the extension of the "small gain theorem" of monotone i/o theory to reaction-diffusion partial differential equations: adding diffusion preserves the global attraction of the ODE equilibrium.


  6. G.A. Enciso and E.D. Sontag. Global attractivity, I/O monotone small-gain theorems, and biological delay systems. Discrete Contin. Dyn. Syst., 14(3):549-578, 2006. [PDF] Keyword(s): systems biology, biochemical networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    This paper further develops a method, originally introduced in a paper by Angeli and Sontag, for proving global attractivity of steady states in certain classes of dynamical systems. In this aproach, one views the given system as a negative feedback loop of a monotone controlled system. An auxiliary discrete system, whose global attractivity implies that of the original system, plays a key role in the theory, which is presented in a general Banach space setting. Applications are given to delay systems, as well as to systems with multiple inputs and outputs, and the question of expressing a given system in the required negative feedback form is addressed.


  7. G.A. Enciso and E.D. Sontag. Monotone systems under positive feedback: multistability and a reduction theorem. Systems Control Lett., 54(2):159-168, 2005. [PDF] Keyword(s): multistability, systems biology, biochemical networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    For feedback loops involving single input, single output monotone systems with well-defined I/O characteristics, a previous paper provided an approach to determining the location and stability of steady states. A result on global convergence for multistable systems followed as a consequence of the technique. The present paper extends the approach to multiple inputs and outputs. A key idea is the introduction of a reduced system which preserves local stability properties. New results characterizing strong monotonicity of feedback loops involving cascades are also presented.


  8. G.A. Enciso and E.D. Sontag. On the stability of a model of testosterone dynamics. J. Math. Biol., 49(6):627-634, 2004. [PDF] Keyword(s): systems biology, biochemical networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    We prove the global asymptotic stability of a well-known delayed negative-feedback model of testosterone dynamics, which has been proposed as a model of oscillatory behavior. We establish stability (and hence the impossibility of oscillations) even in the presence of delays of arbitrary length.


Conference articles
  1. G.A. Enciso and E.D. Sontag. A remark on multistability for monotone systems II. In Proc. IEEE Conf. Decision and Control, Seville, Dec. 2005, IEEE Publications, pages 2957-2962, 2005. Keyword(s): multistability, systems biology, biochemical networks, nonlinear stability, dynamical systems, monotone systems.


  2. G.A. Enciso and E.D. Sontag. A remark on multistability for monotone systems. In Proc. IEEE Conf. Decision and Control, Paradise Island, Bahamas, Dec. 2004, IEEE Publications, pages 249-254, 2004. Keyword(s): multistability, systems biology, biochemical networks, nonlinear stability, dynamical systems, monotone systems.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Thu Nov 23 10:40:56 2017
Author: sontag.


This document was translated from BibTEX by bibtex2html